OUTPUT

Frequency

125 MHz (Three dual square wave outputs)

Signal Type (Sine to Square)

- Three signal translators (sine to dual square wave)
- Two square wave outputs per signal translator, 180 degrees out of phase with minimal phase skew
- Each output high level independently adjustable from 0.5 to 1 VDC
- Each output low level will be 0 VDC, nominal
- Each output will drive a 50 ohm load
- J2 outputs Square (+)
- J3 outputs Square (-)

STABILITY

Phase Noise L(f)

10 kHz offset, -150 dBc/Hz, goal **Total RMS Jitter** (Considering an integrated phase noise bandwidth of 10 Hz to 10 kHz)

≤2.5E-13 seconds, goal POWER REQUIREMENTS

Supply Voltage

+15 VDC ±2% (Regulated to +12 VDC to power oscillators and modules)

Warm-up Power

≤ 1.8 Amp for <5 minutes at +25°C

Total Power

≤ 1.5 Amp at steady state (+25°C)

MECHANICAL

Package

Sprinter oscillators and LNST Modules mounted on an aluminum plate

Dimensions

8 x 10 x 1.5" max

Connectors

RF Outputs: SMA(f) (Located on last modules in the string) Power and GND: Terminal Strip

Mounting

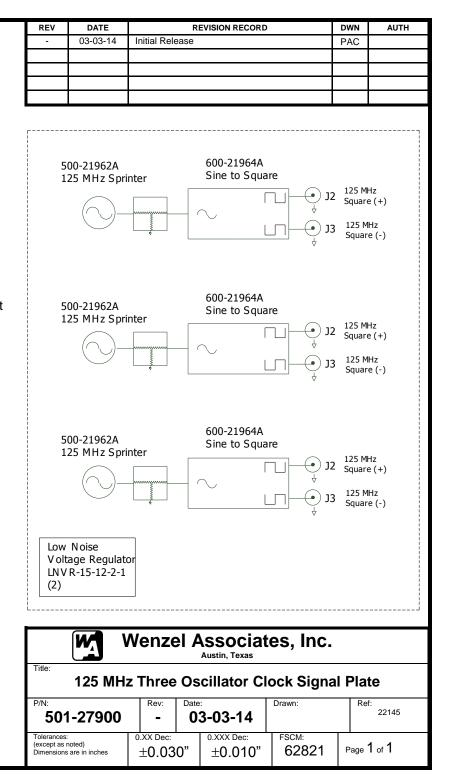
0.166" thru holes, 6 places

ADJUSTMENT

(Accessible on each individual oscillator) Mechanical Tuning $\pm 4 \times 10^{-6}$ Electrical Tuning $\pm 5 \times 10^{-7}$, ± 5 VDC Negative slope

CRYSTAL

125 MHz SC-cut


OTHER

Design

Consists of three individual 125 MHz Sprinter oscillators, each followed by a LNST module. Each LNST module will produce two adjustable square wave outputs that are 180 degrees out of phase via SMA connectors.

Test Data

Square Wave Level (verify adjustment range) Phase Noise RMS Jitter Current Draw

